

 Navigation

 	
 index

 	
 next |

 	vivodict 0.3.1 documentation »

Welcome to vivodict’s documentation!

Contents:

	vivodict
	Features

	Motivation

	Basic Usage

	Convenience Functions

	Installation
	Stable release

	From sources

	History
	0.3.1 (2017-07-23)

	0.3.0 (2017-07-23)

	0.2.0 (2017-07-23)

	0.1.1 (2017-07-23)

	0.1.0 (2017-07-23)

 © Copyright 2017, Adamos Kyriakou.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	vivodict 0.3.1 documentation »

vivodict

[image: https://img.shields.io/pypi/v/vivodict.svg]
 [https://pypi.python.org/pypi/vivodict][image: https://img.shields.io/travis/somada141/vivodict.svg]
 [https://travis-ci.org/somada141/vivodict][image: Documentation Status]
 [https://vivodict.readthedocs.io/en/latest/?badge=latest]This package provides a simple implementation of an auto-vivified [https://en.wikipedia.org/wiki/Autovivification] Python dict, i.e., a
dictionary where accessing a missing key doesn’t raise the standard KeyError
exception but instead implicitly creates and returns an empty auto-vivified
dict under that key.

Features

	Auto-vivified VivoDict class derived from the standard Python dict
class (no third-party dependencies).

	Auto-vivification of arbitrarily-nested dict objects.

	Convenience methods for flatten, replace, and apply operations.

	Free software: MIT license

	Documentation: https://vivodict.readthedocs.io.

Motivation

My primary motivation for developing this package is because it contained a
piece of code I kept copy-pasting like a bloody caveman between projects.

My typical use-cases for this code include:

	Wrap the decoded JSON dict from crummy APIs without a schema that just
decide to drop keys for which the values are null resulting in code with
nested if "key" in result:. This allowed me to either retrieve the value
if it was there or at least arriving at an empty dict which evaluates to
False when mapping their half-formed data to my own data-structures.

	Create arbitrarily-nested dictionaries of code stats that I can keep organized
as I like while using in the code and then quickly flatten to a Graphite
compatible format prior to posting them to ... well Graphite.

Basic Usage

This would be the typical Python dict behaviour when accessing a missing
key:

>>> d = {"a": 1, "b": 2}
>>> d["a"]
1
>>> d["missing"]

KeyError Traceback (most recent call last)
<ipython-input-3-d4f58b57b715> in <module>()
----> 1 d["missing"]

KeyError: 'missing'

While if we were using a VivoDict, then upon accessing a missing key we
would be provided with an implicitly created empty VivoDict as such:

>>> from vivodict import VivoDict
>>> d = VivoDict.vivify({"a": 1, "b": 2})
>>> d["a"]
1
>>> d["missing"]
{}

Note

Note that instantiation above is not performed simply by passing an existing
dict to VivoDict but instead through the vivify class method
which can recursively convert any arbitrarily-nested dict to a
VivoDict.

Now, while the above doesn’t seem to offer anything a simple try-except or
a if "key" not in d wouldn’t offer, the VivoDict becomes useful when
dealing with arbitrarily nested dictionaries where there may be several levels
of missing keys. For example:

>>> from vivodict import VivoDict
>>> d = VivoDict({"a": 1, "b": {"c": 2}, "d": {"e": {"f": 3}}})
>>> d["a"]
1
>>> d["b"]["c"]
2
>>> d["d"]["e"]["f"]
3
>>> d["i"]["am"]["missing"]["eh"] = 4
>>> d
{'a': 1,
'b': {'c': 2},
'd': {'e': {'f': 3}},
'i': {'am': {'missing': {'eh': 4}}}}

So, as can be seen, having auto-vivification allows one to nest keys and values
to whatever degree.

Warning

The primary caveat of the above functionality is that VivoDict are very
forgiving when it comes to typos which can leads to weird errors. A
mistyped key will simply create a new VivoDict and will allow you to go
down some rabbithole of erroneously typed keys your linter won’t get you out
of.

Convenience Functions

In addition to the above, a few basic convenience methods have been built into
the VivoDict class, mostly cause they make my life easier and lazier.

flatten

As I mentioned prior one of my typical use-cases for vivodict is using it
to store nested metrics which I then post to Graphite via simple HTTP requests.

Graphite, however, bases its structure on . delimited names where anything
preceding a . is considered to be a metric folder with the last token being
the metric itself.

Thus, I needed a quick way to flatten a nested dict into a Graphite
compatible version.

The flatten method does exactly that:

>>> d = VivoDict.vivify({"a": 1, "b": {"c": 2}, "d": {"e": {"f": 3}}})
>>> d.flatten()
{'a': 1, 'b.c': 2, 'd.e.f': 3}

replace

Following the same premise as with flatten I needed to quickly ‘reset’ my
metrics back to 0 between posting cycles.

Hence, replace will replace all ‘leaf’ node values in what is essentially a
tree with a given value:

>>> d = VivoDict.vivify({"a": 1, "b": {"c": 2}, "d": {"e": {"f": 3}}})
>>> d.replace(replace_with=0)
>>> d
{'a': 0, 'b': {'c': 0}, 'd': {'e': {'f': 0}}}

Warning

As you may have noticed from the above snippet, the replace method
performs an in-place replacement instead of returning a copy of the
original VivoDict with replaced values.

Should you need to maintain an original copy I’d suggest you use the copy
package and its deepcopy function (cause Python passes by reference) as
such:

>>> import copy
>>> original = VivoDict.vivify({"a": 1, "b": {"c": 2}, "d": {"e": {"f": 3}}})
>>> modified = copy.deepcopy(original)
>>> modified.replace(replace_with=0)
>>> original
{'a': 1, 'b': {'c': 2}, 'd': {'e': {'f': 3}}}
>>> modified
{'a': 0, 'b': {'c': 0}, 'd': {'e': {'f': 0}}}

apply

Lastly, I often had to modify all values through a given function, typically
divide them by a number of observation for average metrics which can be easily
done through the apply method which can take any callable as an
argument and replace the original value with its return-value:

>>> d = VivoDict.vivify({"a": 1, "b": {"c": 2}, "d": {"e": {"f": 3}}})
>>> def double(value):
>>> return value * 2
>>> d.apply(double)
>>> d
{'a': 2, 'b': {'c': 4}, 'd': {'e': {'f': 6}}}
>>> d.apply(lambda value: value / 2)
{'a': 1, 'b': {'c': 2}, 'd': {'e': {'f': 3}}}

Warning

Much like replace, the apply method replaces values in-place.

 © Copyright 2017, Adamos Kyriakou.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	vivodict 0.3.1 documentation »

Installation

Stable release

To install vivodict, run this command in your terminal:

$ pip install vivodict

This is the preferred method to install vivodict, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for vivodict can be downloaded from the Github repo [https://github.com/somada141/vivodict].

You can either clone the public repository:

$ git clone git://github.com/somada141/vivodict

Or download the tarball [https://github.com/somada141/vivodict/tarball/master]:

$ curl -OL https://github.com/somada141/vivodict/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

 © Copyright 2017, Adamos Kyriakou.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 previous |

 	vivodict 0.3.1 documentation »

History

0.3.1 (2017-07-23)

	README.rst: Fixed minor formatting typo.

0.3.0 (2017-07-23)

	Cleanup the docos and removed a bunch of the unnecessary stuff.

0.2.0 (2017-07-23)

	Added more unit-tests and improved docstrings.

0.1.1 (2017-07-23)

	Fixed issues with the Python dependencies.

0.1.0 (2017-07-23)

	First release on PyPI.

 © Copyright 2017, Adamos Kyriakou.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	vivodict 0.3.1 documentation »

Index

 © Copyright 2017, Adamos Kyriakou.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	vivodict 0.3.1 documentation »

 © Copyright 2017, Adamos Kyriakou.
 Created using Sphinx 1.4.8.

 _static/file.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

